A quarter of US-trained scientists eventually leave

2025/12/16 5:25

A quarter of US-trained scientists eventually leave

RSS: https://news.ycombinator.com/rss

要約

Japanese Translation:

概要:
米国は、海外のSTEM博士課程学生を教育することで長期的に大きな価値を得ます。多くの卒業生が帰国しない場合でも同様です。研究によれば、米国で訓練された博士の約4人に1人が卒業後15年以内に国外へ移住しますが、その特許は世界中で依然として頻繁に引用されています―引用の70%が米国内で発生し、海外ではわずか50%です。どの目的国でも、米国研究者はその国単独より5倍多くの特許引用を受け、他国全体と同等のシェアを占めます。移動パターンは分野によって異なり(生命科学では低いがAIや量子科学では高い)、しかし全体としての離脱率は数十年にわたり安定しており、国際的な人材流入という持続的傾向を示しています。これらの知見は、外国博士課程への継続的投資が米国の技術アウトプットに高いリターンをもたらし続けることを示唆しています。そのため大学は国際プログラムへの資金提供を維持または増加させるべきであり、テック企業は米国研究に根ざしたグローバル協力ネットワークから継続的な利益を期待できます。

本文

概要

1980年から2024年までに新たに収集したデータを用いて、米国で教育を受けた科学的活躍を行う STEM 博士号取得者の25 %が卒業後15年間以内に米国外へ移住していることを示します。離脱率は生命科学分野では低く、AI・量子科学分野では高いものの、全体として数十年にわたり安定しています。一般的な認識と逆に、卒業生が海外へ移住した場合でも米国技術には恩恵があります。卒業生の研究成果への米国のグローバル特許引用率は移民後に70 %から50 %へ低下しますが、それでも目的地国のシェアの5倍、他国全体を合算したものと同程度の大きさです。これらの結果は、米国が外国人科学者の育成によって得る価値―彼らが留まる場合だけでなく、離れる場合でも―を強調しています。


投稿履歴

送信元:Dror Shvadron
[メールを表示] [v1]
2025年12月11日(木) 22:10:20 UTC (5,427 KB)

同じ日のほかのニュース

一覧に戻る →

2025/12/16 6:37

Fix HDMI-CEC weirdness with a Raspberry Pi and a $7 cable

## Japanese Translation: > **概要:** > Samsung S95B TV(論理アドレス 0x00)、Denon AVR‑X1700H(0x05)、Apple TV、PS5、Xbox Series X、Nintendo Switch 2、および `/dev/cec0` をリッスンする Raspberry Pi 4 が含まれるホームシアター構成で、テレビの入力にのみ切り替えるコンソールが原因となるオーディオルーティング問題を著者は解決します。 > Pi(論理アドレス 0x01)から AVR に「System Audio Mode Request」パケット(`15:70:00:00`)を送信することで、受信機は ARC を有効化し、すべてのコンソールオーディオをテレビではなく自身経由でルーティングします。 > 著者は Python スクリプト `cec_auto_audio` でこれを実装しており、長時間稼働する `cec-client -d 8` を起動し、TRAFFIC 行から Active Source イベント(オペコード 0x82)を解析し、以前に Set System Audio Mode(オペコード 0x72)が検出されていない場合に毎回ウェイク時にパケットを送信します。 > スクリプトは systemd サービス `cec_auto_audio.service` としてパッケージ化され、起動時に開始されます。これにより、多層の HomeKit/Eve オートメーションと比べて低レイテンシで軽量な代替手段を提供します。 > トラブルシューティングガイドには、スキャン(`echo "scan" | cec-client -s`)、トラフィック監視(`cec-client -m`)、および欠落オペコード(0x82, 0x84, 0x70, 0x72)の良いケースと悪いケースの比較が含まれます。 > 残るエッジケースとして、コンソールのスタンバイがテレビチューナーを起動させる場合や HomeKit オートメーションがアクティブなソースなしでテレビをオンにする場合などには、追加の状態機械ロジックが必要になる可能性があります。著者はコミュニティメンバーに対し、より広範なトラブルシューティングのために CEC パケットトレースを共有してもらうよう呼びかけています。

2025/12/11 8:54

Nature's many attempts to evolve a Nostr

## Japanese Translation: **要約** 人気のあるアプリケーションの普遍的な設計は、ユーザーのデータと暗号鍵を所有する単一クラウドサーバーに集中しています(「あなたの鍵がないなら、あなたのデータではない」)。この中央集権化は封建制や寡占構造を生み出します。サーバーは橋を上げてユーザーを切り離す城のような存在です。フェデレーション(例:Mastodon、Matrix)はサーバー間で通信できるようにしますが、鍵とデータは依然としてサーバーの管理下にあり、ネットワーク理論はそのようなフェデレートシステムがスケールフリー分布へ収束し、支配的なハブを生み出すと予測しています。これはGmail/ProtonMail のメール寡占や Facebook Threads の ActivityPub ノードが Fediverse を支配する現象として観察されています。 セルフホスティングは居住IPの禁止やインフラコストにより多くのユーザーが個人サーバーから離れるため、非実用的になります。ピアツーピアネットワークはユーザー所有鍵を提供しますが、拡張性、信頼できないノード、スーパーpeer の中央集権化、複雑な最終的一致メカニズム、および長い多ホップルーティング遅延に悩まされます。 Nostr プロトコルは「リレーモデル」を提案します。単純で信頼できないリレーは署名されたメッセージを転送するだけで、相互通信しません。これにより \(N^2\) スケーリング問題を回避します。ユーザーは数個(通常 2–10)のリレーユーザーに購読し、自分のデータと鍵を完全に制御でき、リレーが失敗または停止した場合でも信頼性高く離脱できます。広く採用されれば、これはユーザーに真の所有権と単一点障害への耐久性を与え、中央集権サーバーに依存する企業に対し、よりユーザー中心で分散型アーキテクチャとの競争を強いるでしょう。これにより、ソーシャルメディアやメッセージングは真の分散モデルへと再構築される可能性があります。

2025/12/12 15:47

“Are you the one?” is free money

## 日本語訳: --- ## 要約 この記事は、番組「Are You the One?」の参加者が数学モデルを用いて、最終エピソード前にほぼ確実に全ての正しいカップルを推測できる方法を説明しています。戦略的にトゥルーブースとエピソード終了時のマッチアップデータを活用することで達成されます。 - **ゲーム設定**:10人の男性と10人の女性が、色でのみ明らかになる10組の完璧なペアに分けられます。参加者はすべてのペアを正しく推測し、100万ドルを獲得します。 - **情報源**: - *トゥルーブース* は特定のペアが成立しているかどうか(バイナリ結果)を確認します。 - *エピソードマッチアップ* はそのラウンドで正しいペアの総数のみを明らかにします。 「ブラックアウト」エピソード(0件マッチ)は、そのラウンド内のすべてのペアについて否定的な情報を提供し、複数のトゥルーブースと同等の効果があります。 - **モデル**:著者は OR‑Tools の最適化フレームワークを構築し、シーズン開始時に約400万件の有効マッチング(≈4 百万)を追跡し、各イベント後に更新します。シーズン1ではエピソード8でモデルが「解読」されました。 - **情報理論**:各イベントは約1〜1.6ビットの情報量を提供します。シミュレーションでは ~1.23 bits/イベント、実際の番組データでは ~1.39 bits/イベント、最適戦略で最大 1.59 bits/イベントが得られます。全検索空間は約22ビット(10!)を必要とするため、完璧な戦略には平均して約1.1 bits/イベントが十分です。 - **結果**: - ランダムペアリングでは、カップル数に関係なく平均正解スコアは約1になります。 - 100シーズンのランダムシミュレーションでモデルを使用した成功率は74%でしたが、情報理論戦略では98%に上昇します。 - 実際の番組データ(7シーズン)では71%の成功率と約1.39 bits/イベントとなり、純粋なランダムよりわずかに優れていますが、理論的最適値にはまだ届きません。 - **今後の作業**:著者はインタラクティブなウェブツールを開発予定で、ユーザーが異なる戦略を試し、必要な情報ビット数を確認し、実際のデータとパフォーマンスを比較できるようにします。 **影響** 本研究は参加者やプロデューサーに対して効率的な質問設計のための具体的なアルゴリズムフレームワークを提供し、エンターテインメントにおける組合せ最適化とベイズ推論の実用例を示すとともに、研究者にリアルワールドケーススタディとしてさらなる探求の機会を与えます。

A quarter of US-trained scientists eventually leave | そっか~ニュース